Model Interpretation (and Trust Issues)

Machine learning algorithms can be black boxes--inputs go in, outputs come out, and what happens in the middle is anybody's guess. But understanding how a model arrives at an answer is critical for interpreting the model, and for knowing if it's doing something reasonable (one could even say... trustworthy). We'll talk about a new algorithm called LIME that seeks to make any model more understandable and interpretable.

Relevant links:

Model Interpretation (and trust issues)
Linear Digressions